

QUERY LANGUAGES FOR ASSOCIATION RULES

s.l. drd. ing.ec. Mirela Danubianu

« Stefan cel Mare » University Suceava

mdanub@eed.usv.ro

Abstract. Knowledge discovery from huge databases is one of the most actual problem. To solve it

we can use an inductive database. With an inductive database the analyst performs a set of very

different operations on data using a special-purpose language, powerful enough to perform all the

required manipulations, such as data preprocessing, pattern discovery and post-processing. In this

paper we present two query languages (MSQL and MINE RULE) that have been proposed for mining

the association rules and discuss their common features and differences.

Keywords: association rules, query languages, data mining

1 INTRODUCTION

Knowledge Discovery in Databases (KDD) (Han

and Kamber 2001) is a complex process which

involves many steps that must be done sequentially. If

we use an inductive database, that integrates raw data

with knowledge extracted from raw data, materialized

under the form of patterns into a common framework

that supports the KDD process, then, this process

consists essentially in a querying process, enabled by

an ad-hoc, powerful and universal query language

that can deal both with raw data or patterns.

There are some query languages that can be

considered adequate for inductive databases. Most of

this languages emphasize one of the different phases

of the KDD process. This paper is a evaluation of two

products: MSQL (Imielinski et al.,1996; Imielinski

and Virmani. 1999) and MINE RULE (Meo et al.,

1996). In Section 2 we mention the desired

properties of a language for mining an inductive

database, Section 3 introduces the main features of

the analyzed languages, whereas in Section 4 some

real examples of queries are discussed, so that the

comparison between the languages is straightforward.

2 REQUIRED PROPERTIES OF A DATA

MINING LANGUAGE

A query language for inductive databases, is an

extension of a database query language that includes

primitives for supporting the steps of a KDD process,

that are:

–the selection of data to be mined. The language

must offer the possibility to select, to manipulate and

to query data and views in the database. It must also

provide support for multidimensional data

manipulation.

–the specification of the type of patterns to be mined.

–the specification of the needed background

knowledge
–the definition of constraints that the extracted

patterns must satisfy. This implies that the language

allows the user to define constraints that specify the

interesting patterns.

–the post-processing of results. The language must

allow to browse the patterns, apply selection

templates, cross over patterns and data, e.g., by

selecting the data in which some patterns hold, or

aggregating results.

3 QUERY LANGUAGES FOR ASSOCIATION

RULES MINING

MSQL has been described in (Imielinski et al.,1996;

Imielinski and Virmani. 1999). The main features of

MSQL, are the following: ability to nest SQL

expressions such as sorting and grouping in a MSQL

statement and allowing nested SQL queries, cross-

over between data and rules with operations allowing

to identify subsets of data satisfying or violating a

given set of rules, distinction between rule generation

and rule querying. As the volume of generated rules

might explode, rules might be extensively generated

only at querying time, and not at generation time.

The language comprises five basic statements:

GetRules that generates rules into a rule base;

SelectRules that queries the rule base; Create

Encoding that efficiently encodes discrete values into

continuous valued attributes; satisfies and violates

that allow to cross-over data and rules, and that can

be used in

MINE RULE is an extension of SQL, and its

description can be found in (Meo et al., 1996) and

[Meo et al., 1997). This operator extracts a set of

association rules from the database and stores them

back in the database in a separate relation. Its main

features are the following: selection of the relevant set

of data for a data mining process, definition of the

structure of the rules to be mined and of constraints

applied at different granularity levels, definition of

the grouping condition that determines which data of

the relation can take part to an association rule,

definition of rule evaluation measures (i.e., support

and confidence thresholds).

The selection above mentioned as the first feature of

MINE RULE is applied at different granularity levels,

that is at the row level or at the group level. The

second feature defines unidimensional association

rule (i.e., its elements are the different values of the

same dimension or attribute), or multidimensional

one (each rule element involves the value of more

attributes). Furthermore, rules constraints belong to

two categories: the former ones are applied at the rule

level (mining conditions), while the second ones

(cluster conditions), are applied at the body or head

level (i.e., the sets of rule elements that compose each

rule).

4 EXAMPLE

We describe here an analysis problem that will serve

as example for a comparison between the three

languages: we are considering information of Figure

1 and we are looking for association rules between

the items and the measurement systems.

The data derives from a relational database which

emphasizes the contracted services supplied by

producer of public utilities by different clients

identified by a code (coda). The considered data are:

the agent’s code (coda), the provided services and

the water and thermic energy measurement.

We are considering a complete KDD process. We

will consider one manipulation at the pre-processing

step (selection of the items that are measured by

various instruments), crossing-over between extracted

rules and original data (selecting tuples of the source

table that violate all the extracted rules of size 3),and

two post-processing operations (selection of rules

with 2 items in the body and selection of rules having

a maximal body).

Fig. 1 Sample of source file used for the comparation

of the two query languages

MSQL Table presented in Figure1 corresponds to the

source data encoded in the input format used by

MSQL. There are as many boolean attributes as there

are possible items.

Pre-processing :selection of the subset of data to be

mined.We are interested only in services measured

with an instrument. MSQL requires that we

make a selection of the subset of data to be mined,

before the extraction task.

The relation on which we will work is supposed to

have been correctly selected from a pre-existing set of

data, by means of a view, named VContr.

Rules extraction. We want to extract rules associating

between the product contracted and the measurement

system having a support over 25 % and a confidence

over 80 %.

GETRULES (VContr) INTO VContrR

WHERE BODY has {(apa_pot=1) OR

(apa_ind=1)OR (apa_c=1) OR (meteo=1)

OR (ep_bio=1) OR (ep_mb=1) OR

(en_ter1=1)OR (en_ter2=1)}AND

Consequent is {(Apom =1)} AND

 support>=0.25 AND confidence>=0.8

This example puts in evidence a limit of MSQL :if the

number of items is high, the number of predicates in

the WHERE clause increases correspondingly!

Crossing-over: looking for exceptions in the original

data. Finally, we select tuples from VContr that

violate all the extracted rules of size 3.

SELECT *FROM VContr

WHERE VIOLATES ALL

(SELECTRULES(VContrR)WHERE length=3)

Post-processing step 1:manipulation of rules. We

select rules with 2 items in the body. As MSQL is

designed to extract rules with one item in the head

and as it provides access only to the extracted rules (

not to the originating itemsets), we must specify that

the total size of the rule is 3.

SelectRules(VContrR)where length=3

Post-processing step 2: extraction of rules with a

maximal body is equivalent to require that there is no

couple of rules with the same consequent, such that

the body of one rule is included in the body of the

other one.

SELECTRULES (VContrR) AS R1

WHERE NOT EXISTS (SELECTRULES

(VContrR)AS R2

WHERE R2.body has R1.body

 AND NOT (R2.body is R1.body)

 AND R2.consequent is R1.consequent)

Clearly, the main advantage of MSQL is that it is

possible to query knowledge as well as data, by using

SelectRules on rule-bases and GetRules on data (and

it is possible to specify if we want rules to be

materialized or not). Another good point is that

MSQL has been designed to be an extension of

classical SQL, making the language quite easy to

understand. But MSQL should be extended,

particularly with a better handling of pre-and post-

processing steps.

MINE RULE We include the same information of

Figure 1 into a normalized relation Contracts over a

schema (coda, tip, tip_m).

Pre-processing :selection of the subset of data to be

mined. In contrast to MSQL , MINE RULE does not

require to apply some pre-defined view on the

original data. As it is designed as an extension to

SQL, it perfectly nest SQL, and thus, it is possible to

select the relevant subset of data to be mined by

specifying it in the WHERE clause of the query.

Rules extraction. In MINE RULE, we specify that we

are looking for rules associating one or more services

(rule’s body) and measurement system (rule’s head):

MINE RULE ContrR AS

SELECT DISTINCT 1..n item AS BODY,

1..1 tip_m AS head,

SUPPORT, CONFIDENCE

FROM Contracts WHERE tip_m=”A”

GROUP BY coda

EXTRACTING RULES WITH SUPPORT:0.25,

CONFIDENCE:0.8

Extracted rules are stored into the table ContrR (rid,

bid, hid, supp, conf) where rid ,bid, hid are the

identifiers assigned to rules, body itemsets and head

itemsets. The body and head itemsets are stored in

tables ContrR_B (bid,bodySchema) and

ContrR_H(hid,headSchema).

Crossing-over: looking for exceptions in the original

data. We want to find tuples of the original relation

violating all rules with 2 items in the body. As rule’s

components (bodies and heads) are stored in

relational tables, we use an SQL query to manipulate

itemsets. The correspondent query is presented here:

SELECT * FROM Contracts AS S1

WHERE NOT EXISTS

 (SELECT * FROM ContrR AS R1

 WHERE (SELECT tip_m FROM ContrR_H

WHERE hid=R1.hid)=S1.tip_m

 AND (SELECT COUNT(*)FROM ContrR_B

WHERE R1.bid=ContrR_B.bid)=2

 AND NOT EXISTS

(SELECT *FROM ContrR_B AS I1

WHERE I1.bid=R1.bid AND NOT EXISTS

(SELECT *FROM Contracts AS S2

WHERE S2.coda=S1.coda AND

S2.tip=I1.tip)));

This query is hard to write and to understand. It aims

at selecting tuples of the original table such that there

are no rules of size 3 that hold in it. To check that, we

verify that the consequent of the rule occurs in a tuple

associated to a transaction and that there are no items

of the rule ’s body that do not occur in the same

transaction.

Post-processing step 1: Once again, as itemsets

corresponding to rule’s components are stored in

tables (ContrR_B ,ContrR_H), we can select rules

having two items in the body with a simple SQL

query.

SELECT * FROM ContrR AS R1 WHERE 2=

(SELECT COUNT(*)FROM ContrR_B R2

 WHERE R1.bid=R2.bid);

Post-processing step 2:selection of rules with a

maximal body.

We select rules with a maximal body for a given

consequent. As rules’ components are stored in

relational tables, we use again a SQL query to

perform such a task.

SELECT * FROM ContrR AS R1

WHERE NOT EXISTS

(SELECT * FROM ContrR AS R2

WHERE R2.hid=R1.hid

AND NOT R2.bid=R1.bid

AND NOT EXISTS

(SELECT *

FROM ContrR_B AS B1

WHERE R1.bid=B1.bid AND

 NOT EXISTS

 (SELECT *

FROM ContrR_B AS B2

WHERE B2.bid=R2.bid

AND B2.tip=B1.tip)))

The first advantage of MINE RULE is that it has been

designed as an extension to SQL. Moreover, as it

perfectly nests SQL, it is possible to use classical

statements to pre-process the data, and, for instance,

select the subset of data to be mined. Like MSQL,

data pre-processing is limited to operations that can

be expressed in SQL: it is not possible to sample data

before extraction, and the discretization must be done

by the user. Like MSQL, MINE RULE allows the

user to specify some constraints on rules to be

extracted (on items belonging to head or body, on

their cardinality as well as more complex constraints

based on the use of a taxonomy). Also, like MSQL,

MINE RULE is essentially designed around the

extraction step, and it does not provide much support

for the other KDD steps (e.g., post-processing tasks

must be done with SQL queries).

5 CONCLUSIONS

In this paper, we have considered various features of

two languages, MSQL and MINE RULE, that extract

association rules from a relational database.

Then, we have compared them with the desired

properties of an ideal query language for inductive

databases, and we have presented a set of queries

taken from data mining practice and have discussed

the suitability of these languages for querying

inductive databases.

The outcome is that no language presents all the

desired properties: MSQL seems the one that offers

the larger number of primitives tailored for post-

processing and an on-the-fly encoding, specifically

designed for efficiency, MINE RULE is the only one

that allows to dynamically partition the source

relation into groups from which the rules will be

extracted; a second level of grouping, the clusters,

from which more sophisticated rule constraints can be

applied, is also possible. Furthermore, it looks as the

only one with an algebraic semantics, what could

become an important positive factor when query

optimization issues will be addressed.

However, one of the main limits of all the languages

is the insufficient support of post-processing issues.

Whatever the language is, the user must use one of

the predefined built-in options. This problem

becomes crucial when considering user-defined post-

processing operations involving something else than

rule ’s component, support and confidence.

This study allows us to conclude that the path to reach

the maturity in inductive database technology is still

far to be reached. However, the limits and the merits

of the current query languages to give support to the

knowledge discovery process have been already

identified.

REFERENCES

Imielinski,T.,Virmani,A.,Abdulghani,A.(1996)

:DataMine: Application Programming Interface

and Query Language for Database

Mining.Proc.of the 2nd Int.Conf.on Knowledge

Discovery and Data Mining, KDD ’96.3, p256 –

261.

Imielinski,T.,Virmani,A.:MSQL (1999) :A

QueryLanguage for Database Mining.Data

Mining and Knowledge Discovery.3 , p.373 –

408.

Han,J.,Kamber,M. (2001):Data Mining –Concepts

and Techniques. Morgan Kaufmann Publishers .

Meo,R.,Psaila,G.,Ceri,S. (1996) :A New SQL-like

Operator for Mining Association Rules. Proc.of

the 22nd Int.Conf.of Very Large Data

Bases.Bombay, India

Meo,R.,Psaila,G.,Ceri,S. (1997) :An Extension to

SQL for Mining Association Rules. Data

Mining and Knowledge Discovery.9:4 .

