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Abstract.  Knowledge discovery  from huge databases is one of the most actual problem. To solve it 

we can use an inductive database. With an inductive database the  analyst performs a set of very 

different operations on data using a special-purpose language, powerful enough to perform all the 

required manipulations, such as data preprocessing, pattern discovery and  post-processing. In this 

paper we present  two query languages (MSQL and MINE RULE) that have been proposed for mining 

the association rules  and discuss their common features and differences.  
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1 INTRODUCTION 

 

Knowledge Discovery in Databases (KDD) (Han    

and Kamber 2001) is a complex process which 

involves many steps that must be done sequentially. If  

we use an inductive database, that integrates raw data 

with knowledge extracted from raw data, materialized 

under the form of patterns into a common framework 

that supports the KDD process, then, this process 

consists essentially in a querying process, enabled by 

an ad-hoc, powerful and universal query language 

that can deal both with raw data or patterns.  

 

There are  some query languages that can be 

considered adequate for inductive databases. Most of 

this languages  emphasize one of the different phases 

of the KDD process. This paper is a evaluation of two 

products: MSQL (Imielinski et al.,1996; Imielinski 

and Virmani. 1999) and MINE RULE (Meo et al., 

1996).  In Section 2 we mention  the desired 

properties of a language for mining an inductive 

database,  Section 3 introduces the main features of 

the analyzed languages, whereas in Section 4 some 

real examples of queries are discussed, so that the 

comparison between the languages is straightforward.   

 

2 REQUIRED PROPERTIES OF A DATA 

MINING LANGUAGE 

 

A query language for inductive databases, is an 

extension of a database query language that includes 

primitives for supporting the steps of a KDD process, 

that are:  

–the selection of data to be mined. The language 

must offer the possibility to select,  to manipulate and 

to query data and views in the database. It must also 

provide support for multidimensional data 

manipulation. 

–the specification of the type of patterns to be mined.  

–the specification of the needed background 

knowledge 
–the definition of constraints that the extracted 

patterns must satisfy. This  implies that the language 

allows the user to define constraints that specify the 

interesting patterns. 

–the post-processing of results. The language must 

allow to browse the patterns,  apply selection 

templates, cross over patterns and data, e.g., by 

selecting the data in which some patterns hold, or 

aggregating results. 

 

 



3 QUERY LANGUAGES FOR ASSOCIATION 

RULES MINING 

 

MSQL has been described in (Imielinski et al.,1996; 

Imielinski and Virmani. 1999). The main features of 

MSQL, are the following: ability to nest SQL 

expressions such as sorting and grouping in a MSQL 

statement and allowing nested SQL queries, cross-

over between data and rules with operations allowing 

to identify subsets of data satisfying or violating a 

given set of rules, distinction between rule generation 

and rule querying. As the volume of generated rules 

might explode, rules might be extensively generated 

only at querying time, and not at generation time. 

 

The language comprises five basic statements: 

GetRules that generates rules into a rule base; 

SelectRules that queries the rule base; Create 

Encoding that efficiently encodes discrete values into 

continuous valued attributes; satisfies and violates 

that allow to cross-over data and rules, and that can 

be used in 

 

MINE RULE is an extension of SQL, and its 

description can be found in (Meo et al., 1996) and 

[Meo et al., 1997). This operator extracts  a set of 

association rules from the database and stores them 

back in the  database in a separate relation. Its main 

features are the following: selection of the relevant set 

of data for a data mining process, definition of the 

structure of the rules to be mined and of constraints 

applied at different granularity levels, definition of 

the grouping condition that determines which data of 

the relation can take part to an association rule, 

definition of rule evaluation measures (i.e., support 

and confidence thresholds). 

 

The selection above mentioned as the first feature of  

MINE RULE is applied at different granularity levels, 

that is at the row level or at the group level. The 

second feature defines unidimensional association 

rule (i.e., its elements are the different values of the 

same dimension or attribute), or multidimensional 

one (each rule element involves the value of more 

attributes). Furthermore, rules constraints belong to 

two categories: the former ones are applied at the rule 

level (mining conditions ), while the second ones 

(cluster conditions ), are applied at the body or head 

level (i.e., the sets of rule elements that compose each 

rule). 

 

4 EXAMPLE 

 

We describe here an analysis problem that will serve 

as  example for a comparison between  the three 

languages: we are considering information of Figure 

1 and we are looking for association rules between 

the items and the measurement systems. 

The data  derives from a relational  database which 

emphasizes  the contracted services  supplied by 

producer  of  public utilities  by different clients 

identified by a code (coda). The considered data are: 

the agent’s  code (coda), the provided services  and  

the  water and thermic energy measurement. 

 

We are considering a complete KDD process. We 

will consider one manipulation at the pre-processing 

step (selection of the items that are  measured by 

various instruments), crossing-over between extracted 

rules and original data (selecting tuples of the source 

table that violate all the extracted rules of size 3),and 

two post-processing operations (selection of rules 

with 2 items in the body and selection of rules having 

a maximal body). 

Fig. 1 Sample of source  file used for the comparation 

of the two query languages 

 

MSQL Table presented in Figure1 corresponds to the 

source data encoded in the input format used by  

MSQL. There are as many boolean attributes as there 

are possible items. 

 

Pre-processing :selection of the subset of data to be 

mined.We are interested only in services measured  

with an instrument. MSQL requires that we 

make a selection of the subset of data to be mined, 

before the extraction task. 

 

The relation on which we will work is supposed to 

have been correctly selected from a pre-existing set of 

data, by means of a view, named VContr. 

 

Rules extraction. We want to extract rules associating 

between the product contracted  and the measurement 

system  having a support over 25 % and a confidence 

over 80 %. 
 
GETRULES (VContr) INTO VContrR 

WHERE BODY has {(apa_pot=1) OR 

(apa_ind=1)OR (apa_c=1) OR (meteo=1)  

OR (ep_bio=1) OR (ep_mb=1) OR  

(en_ter1=1)OR (en_ter2=1)}AND 

Consequent is {(Apom =1)} AND 

 support>=0.25 AND confidence>=0.8 



This example puts in evidence a limit of MSQL :if the 

number of items is high, the number of predicates in 

the WHERE clause increases correspondingly! 

 

Crossing-over: looking for exceptions in the original 

data. Finally, we select tuples from VContr that 

violate all the extracted rules of size 3. 

 
SELECT *FROM VContr 

WHERE VIOLATES ALL 

(SELECTRULES(VContrR)WHERE length=3) 

 

Post-processing step 1:manipulation of rules. We 

select rules with 2 items in the body. As MSQL is 

designed to extract rules with one item in the head 

and as it provides access only to the extracted rules ( 

not to the originating itemsets), we must specify that 

the total size of the rule is 3. 

 
SelectRules(VContrR)where length=3 

 

Post-processing step 2: extraction of rules with a 

maximal body is equivalent to require that there is no 

couple of rules with the same consequent, such that 

the body of one rule is included in the body of the 

other one. 
 
SELECTRULES (VContrR) AS R1 

WHERE NOT EXISTS (SELECTRULES  

(VContrR)AS R2 

WHERE R2.body has R1.body 

  AND NOT (R2.body is R1.body) 

  AND R2.consequent is R1.consequent) 

 

Clearly, the main advantage of MSQL is that it is 

possible to query knowledge as well as data, by using 

SelectRules on rule-bases and GetRules on data (and 

it is possible to specify if we want rules to be 

materialized or not). Another good point is that 

MSQL has been designed to be an extension of 

classical SQL, making the language quite easy to 

understand. But MSQL  should be extended, 

particularly with a better handling of pre-and post-

processing steps.  

 

MINE RULE We include the same information of 

Figure 1 into a normalized relation Contracts  over a 

schema (coda, tip, tip_m). 

 

Pre-processing :selection of the subset of data to be 

mined. In contrast to MSQL , MINE RULE does not 

require to apply some pre-defined view on the 

original data. As it is designed as an extension to 

SQL, it perfectly nest SQL, and thus, it is possible to 

select the relevant subset of data to be mined by 

specifying it in the WHERE clause of the query. 

 

Rules extraction. In MINE RULE, we specify that we 

are looking for rules associating one or more services 

(rule’s body) and measurement system (rule’s head): 

MINE RULE ContrR AS 

SELECT DISTINCT 1..n item AS BODY, 

1..1 tip_m AS head, 

SUPPORT, CONFIDENCE 

FROM Contracts WHERE tip_m=”A” 

GROUP BY coda 

EXTRACTING RULES WITH SUPPORT:0.25, 

CONFIDENCE:0.8 

 

Extracted rules are stored into the table ContrR (rid, 

bid, hid, supp, conf ) where rid ,bid, hid are the 

identifiers assigned to rules, body itemsets and head 

itemsets. The body and head itemsets are stored in 

tables ContrR_B (bid,bodySchema) and 

ContrR_H(hid,headSchema). 

 

Crossing-over: looking for exceptions in the original 

data. We want to find tuples of the original relation 

violating all rules with 2 items in the body. As rule’s 

components (bodies and heads) are stored in 

relational tables, we use an SQL query to manipulate 

itemsets. The correspondent query is presented here: 

 
SELECT * FROM Contracts AS S1  

WHERE NOT EXISTS 

    (SELECT * FROM ContrR AS R1 

    WHERE (SELECT tip_m FROM ContrR_H  

WHERE hid=R1.hid)=S1.tip_m 

    AND (SELECT COUNT(*)FROM ContrR_B  

WHERE R1.bid=ContrR_B.bid)=2 

    AND NOT EXISTS  

(SELECT *FROM ContrR_B AS I1 

WHERE I1.bid=R1.bid AND NOT EXISTS 

(SELECT *FROM Contracts AS S2 

WHERE S2.coda=S1.coda AND 

S2.tip=I1.tip ))); 

 

This query is hard to write and to understand. It aims 

at selecting tuples of the original table such that there 

are no rules of size 3 that hold in it. To check that, we 

verify that the consequent of the rule occurs in a tuple 

associated to a transaction and that there are no items 

of the rule ’s body that do not occur in the same 

transaction. 

 

Post-processing step 1: Once again, as itemsets 

corresponding to rule’s components are stored in 

tables (ContrR_B ,ContrR_H ), we can select rules 

having two items in the body with a simple SQL 

query. 

 
SELECT * FROM ContrR AS R1 WHERE 2= 

(SELECT COUNT(*)FROM ContrR_B R2 

 WHERE R1.bid=R2.bid); 

 

Post-processing step 2:selection of rules with a 

maximal body.  

 

We select rules with a maximal body for a given 

consequent. As rules’ components are stored in 

relational tables, we use again a SQL query to 

perform such a task. 

 



SELECT * FROM ContrR AS R1     

WHERE NOT EXISTS     

(SELECT * FROM ContrR AS R2    

WHERE R2.hid=R1.hid    

AND NOT R2.bid=R1.bid     

AND NOT EXISTS  

(SELECT *    

FROM ContrR_B AS B1    

WHERE R1.bid=B1.bid AND 

 NOT EXISTS 

 (SELECT * 

FROM ContrR_B AS B2 

WHERE B2.bid=R2.bid 

AND B2.tip=B1.tip))) 

 

The first advantage of MINE RULE is that it has been 

designed as an extension to SQL. Moreover, as it 

perfectly nests SQL, it is possible to use classical 

statements to pre-process the data, and, for instance, 

select the subset of data to be mined. Like MSQL, 

data pre-processing is limited to operations that can 

be expressed in SQL: it is not possible to sample data 

before extraction, and the discretization must be done 

by the user. Like MSQL, MINE RULE allows the 

user to specify some constraints on rules to be 

extracted (on items belonging to head or body, on 

their cardinality as well as more complex constraints 

based on the use of a taxonomy). Also, like MSQL, 

MINE RULE is essentially designed around the 

extraction step, and it does not provide much support 

for the other KDD steps (e.g., post-processing tasks 

must be done with SQL queries).  

 
5 CONCLUSIONS 

 
In this paper, we have considered various features of 

two languages, MSQL and MINE RULE, that extract 

association rules from a relational database. 

 

Then, we have compared them with the desired 

properties of an ideal query language for inductive 

databases, and we have presented a set of queries 

taken from data mining practice and have discussed 

the suitability of these languages for querying 

inductive databases.  

 

The outcome is that no language presents all the 

desired properties: MSQL seems the one that offers 

the larger number of primitives tailored for post-

processing and an on-the-fly encoding, specifically  

designed for efficiency, MINE RULE is the only one 

that allows to dynamically partition the source 

relation into groups from which the rules will be 

extracted; a second level of grouping, the clusters, 

from which more sophisticated rule constraints can be 

applied, is also possible. Furthermore, it looks as the 

only one with an algebraic semantics, what could 

become an important positive factor when query 

optimization issues will be addressed. 

 

However, one of the main limits of all the languages 

is the insufficient support of post-processing issues. 

Whatever the language is, the user must use one of 

the predefined built-in options. This problem 

becomes crucial when considering user-defined post-

processing operations involving something else than 

rule ’s component, support and confidence. 

 

This study allows us to conclude that the path to reach 

the maturity in inductive database technology is still 

far to be reached. However, the limits and the merits 

of the current query languages to give support to the 

knowledge discovery process have been already 

identified. 
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